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Abstract: We derive constraints on the asymmetry a1 of the momentum fractions carried

by quark and antiquark in K and K∗ mesons in leading twist. These constraints follow from

exact operator identities and relate a1 to SU(3) breaking quark-antiquark-gluon matrix el-

ements which we determine from QCD sum rules. Comparing our results to determinations

of a1 from QCD sum rules based on correlation functions of quark currents, we find that,

for a
‖
1(K

∗) the central values agree well and come with moderate errors, whereas for a1(K)

and a⊥1 (K∗) the results from operator relations are consistent with those from quark cur-

rent sum rules, but come with larger uncertainties. The consistency of results confirms

that the QCD sum rule method is indeed suitable for the calculation of a1. We conclude

that the presently most accurate predictions for a1 come from the direct determination

from QCD sum rules based on correlation functions of quark currents and are given by:

a1(K) = 0.06 ± 0.03, a
‖
1(K

∗) = 0.03 ± 0.02, a⊥1 (K∗) = 0.04 ± 0.03.
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1. Introduction

Hadronic light-cone distribution amplitudes (DAs) of leading twist have been attracting

considerable interest in the context of B physics. They enter the amplitudes of QCD

processes that can be described in collinear factorisation, which include, to leading order

in an expansion in 1/mb, a large class of nonleptonc B decays [1]. DAs are also an essential

ingredient in the calculation of weak decay form factors such as B → π, ρ,K,K∗ from QCD

sum rules on the light-cone and the description of factorisable contributions to these form

factors in SCET, see [2, 3] for recent papers. These decays, and their CP asymmetries,

are currently being studied at the B factories BaBar and Belle and are expected to yield

essential information about the pattern of CP violation and potential sources of flavour

violation beyond the SM.

One particular problem in this context is the size of SU(3) breaking corrections to

K and K∗ DAs, which has been studied in a number of recent papers [4 – 7]. The DAs

themselves are defined as matrix elements of quark-antiquark gauge-invariant nonlocal

operators on the light-cone. To leading-twist accuracy, there are three such DAs for K and

K∗ (z2 = 0):

〈0|q̄(z)/zγ5[z,−z]s(−z)|K(q)〉 = ifK(qz)

∫ 1

0
du eiξ(qz)φK(u) ,
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〈0|q̄(z)/z[z,−z]s(−z)|K∗(q, λ)〉 = (e(λ)z)f
‖
KmK∗

∫ 1

0
du eiξ(qz)φ

‖
K(u),

〈0|q̄(z)σµν [z,−z]s(−z)|K∗(q, λ)〉 = i(e(λ)
µ qν − e(λ)

ν qµ)f⊥
K(µ)

∫ 1

0
du eiξ(qz)φ⊥

K(u), (1.1)

with the Wilson-line

[z,−z] = Pexp

[

ig

∫ 1

−1
dα zµAµ(αz)

]

inserted between quark fields to render the matrix elements gauge-invariant. In the above

definitions, e
(λ)
ν is the polarisation vector of a vector meson with polarisation λ; there are

two leading-twist DAs for vector mesons, φ
‖
K and φ⊥

K , corresponding to longitudinal and

transverse polarisation, respectively. The integration variable u is the (longitudinal) meson

momentum fraction carried by the quark, ū ≡ 1−u the momentum fraction carried by the

antiquark and ξ = u − ū. The decay constants f
(‖,⊥)
K are defined in the usual way by the

local limit of eqs. (1.1) and chosen in such a way that

∫ 1

0
duφ(u) = 1. (1.2)

All three distributions φK , φ
‖
K , φ⊥

K can be expanded in Gegenbauer polynomials C
3/2
n ,

φ(u) = 6uū



1 +
∑

n≥1

anC3/2
n (2u − 1)



 , (1.3)

where the an are hadronic parameters, the so-called Gegenbauer moments.

The most relevant quantities characterising SU(3) breaking of these DAs are the decay

constants fK and f
⊥,‖
K , and a1(K) and a

⊥,‖
1 (K∗), which are related to the first moment of

the corresponding leading-twist DA. a1 describes the difference of the average longitudinal

momenta of the quark and antiquark in the two-particle Fock-state component of the

meson, a quantity that vanishes for particles with equal-mass quarks (particles with definite

G-parity). The decay constants fK and f
‖
K can be extracted from experiment; f⊥

K has

been calculated from both lattice [8] and QCD sum rules, e.g. ref. [7]. In this paper

we focus on the determination of a1: no lattice calculation of this quantity has been

attempted yet, so essentially all available information on a1 comes from QCD sum rule

calculations. a1 can be calculated either directly from the correlation function of two quark

currents [4, 5, 7, 9, 10] or from operator identities relating it to certain quark-quark-gluon

matrix elements, denoted κ4, which are calculated from QCD sum rules themselves [6]. In

a previous paper, ref. [7], we have obtained the following results from the first method, at

the scale of 1 GeV:

a1(K)BZ = 0.050 ± 0.025, a
‖
1(K

∗)BZ = 0.025 ± 0.015, a⊥1 (K∗)BZ = 0.04 ± 0.03, (1.4)

whereas Braun and Lenz found the following results from operator identities [6]:

a1(K)BL = 0.10 ± 0.12, a
‖
1(K

∗)BL = 0.10 ± 0.07. (1.5)
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These results were obtained to first order in ms and neglecting explicit terms in m2
s and

mq in the operator identities. Numerically, however, these terms are not negligible: the

O(m2
s) correction shifts a1(K) by +0.17 and a

‖
1(K

∗) by +0.08 for our central value of ms.

Corrections in mq are small for a
‖
1(K

∗), but chirally enhanced for a1(K) and shift a1(K)

by +0.04 for our central value of mq. A consistent inclusion of O(mq,s) effects requires the

calculation of these terms also for κ4. In the present paper, we present such a calculation

and improve the sum rules for κ4 derived in ref. [6] by the inclusion of all dominant terms to

O(m2
q) and O(m2

s), which include in particular two-loop perturbative and gluon-condensate

contributions. The perturbative contributions come with large coefficients and prove to be

very relevant numerically. We then construct several sum rules for κ4 which differ by the

chirality structure of the involved currents and the spin-parity assignment of the hadronic

states coupling to them. We provide criteria that allow one to identify the sum rules most

suitable for the calculation of κ4 and obtain the corresponding numerical results, including

a careful analysis of the theoretical uncertainty of κ4 and the corresponding values of a1.

One important finding of our paper is that the results of these calculations agree, within

errors, with those from the quark current sum rules, which shows that the application of

the QCD sum rule method to the calcualation of a1 yields mutual consistent results. It is

this consistency that strengthens our confidence in the validity of the results for a1.

Our paper is organised as follows: in section 2 we derive the operator relations for a1,

in section 3 we obtain numerical results for the corresponding matrix elements and compare

with the results of ref. [7]. In section 4 we summarise and conclude. The paper also contains

two appendices giving explicit expressions for all relevant correlation functions and Borel

transforms.

2. Exact identities for a1

In ref. [6], the following relations were obtained for a1(K) and a
‖
1(K

∗):

9

5
a1(K) = −

ms − mq

ms + mq
+ 4

m2
s − m2

q

m2
K

− 8κ4(K) , (2.1)

3

5
a
‖
1(K

∗) = −
f⊥

K

f
‖
K

ms − mq

mK∗
+ 2

m2
s − m2

q

m2
K∗

− 4κ
‖
4(K

∗), (2.2)

where κ4(K) and κ
‖
4(K

∗) are twist-4 quark-quark-gluon matrix elements defined by

〈0|q̄(gGαµ)iγµγ5s|K(q)〉 = iqαfKm2
Kκ4(K), (2.3)

〈0|q̄(gGαµ)iγµs|K∗(q, λ)〉 = e(λ)
α f

‖
Km3

K∗κ
‖
4(K

∗). (2.4)

κ4(K) and κ
‖
4(K

∗) vanish for ms → mq due to G-parity. The special structure of (2.1)

allows one to determine the value of κ4(K) to leading order in ms for mq → 0 [6],

κ4(K) = −
1

8
, (2.5)

which is a consequence of the conservation of the axial current in the chiral limit.
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The above relations were derived from the analysis of matrix elements of the local

operators (
↔
D=

→
D −

←
D)

O(5)
µν =

1

2
q̄γµ(γ5)i

↔
Dν s +

1

2
q̄γν(γ5)i

↔
Dµ s −

1

4
gµν q̄i(γ5)

↔

/D s, (2.6)

whose divergence can be expressed in terms of bilinear quark operators. In this section, we

rederive these relations in a different way and obtain a new relation for a⊥1 (K∗).

The starting point for our analysis are the exact nonlocal operator relations [11, 12]

∂

∂xµ
q̄(x)γµ(γ5)s(−x) = − i

∫ 1

−1
dv vq̄(x)xαgGαµ(vx)γµ(γ5)s(−x)

− (ms ± mq)q̄(x)i(γ5)s(−x), (2.7)

∂µ{q̄(x)γµ(γ5)s(−x)} = − i

∫ 1

−1
dv q̄(x)xαGαµ(vx)γµ(γ5)s(−x)

− (mq ∓ ms)q̄(x)i(γ5)s(−x), (2.8)

where the total translation ∂µ is defined as

∂µ {q̄(x)Γs(−x)} ≡
∂

∂yµ
{q̄(x + y)[x + y,−x + y]Γs(−x + y)}

∣

∣

∣

∣

y→0

. (2.9)

The corresponding nonlocal matrix elements are, for K and K∗
‖ (x2 6= 0):

〈0|q̄(x)γµγ5s(−x)|K(q)〉 = ifKqµ

∫ 1

0
du eiξqx

[

φK(u) + O(x2)
]

+
i

2
fKm2

K

1

qx
xµ

∫ 1

0
du eiξqx[gK(u) − φK(u) + O(x2)], (2.10)

〈0|q̄(x)iγ5s(−x)|K(q)〉 =
fKm2

K

ms + mq

∫ 1

0
du eiξqx

(

φp
K(u) + O(x2)

)

, (2.11)

〈0|q̄(x)γµs(−x)|K∗(q, λ)〉 = f
‖
KmK∗

{

e(λ)x

qx
qµ

∫ 1

0
du eiξqx

[

φ
‖
K(u) + O(x2)

]

+

(

e(λ)
µ − qµ

e(λ)x

qx

)

∫ 1

0
du eiξqx

(

gv
K(u) + O(x2)

)

−
1

2
xµ

e(λ)x

(qx)2
m2

K∗

∫ 1

0
du eiξqx

[

g
(3)
K (u) + φ

‖
K(u) − 2gv

K(u) + O(x2)
]

}

.(2.12)

In the above definitions, φK and φ
‖
K are the leading-twist DAs of K and K∗

‖ , respectively; all

other functions are higher-twist DAs and have been extensively discussed in refs. [11 – 14].

a1(K), the quantity we are interested in, is related to the first moment of φK :

a1(K) =
5

3
MφK

1

with Mf
1 ≡

∫ 1
0 du (u − ū)f(u) being the first moment of the DA f(u). Taking the matrix

elements of (2.7) and (2.8) for K and expanding to leading order in x2 and next-to-leading

– 4 –
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order in qx, one obtains the exact relations

MφK

1 − 2MgK

1 = −
ms − mq

ms + mq
,

1

2

(

MφK

1 + MgK

1

)

= −2κ4(K) + M
φp

K

1 , (2.13)

from which one can determine MφK

1 once either M
φp

K

1 or MgK

1 are known. gK is a twist-4

DA and MgK

1 contains quark-quark-gluon matrix elements itself, cf. refs. [12, 14], whereas

φp
K is twist-3 and M

φp
K

1 is completely determined in terms of the twist-2 DA φK and

mass corrections. M
φp

K

1 can be obtained from a second set of nonlocal operator relations

involving tensor currents q̄(x)σµνγ5s(−x) or, equivalently, from the recursion relations for

the moments of φp
K given in ref. [14]:

M
φp

K

1 =
m2

s − m2
q

m2
K

.

Solving (2.13) for a1(K), we then rederive eq. (2.1). Note that the first term on the

right-hand side is rather sensitive to the value of mq and the second one to that of ms.

For K∗
‖ , the same method yields the equations

M
φ
‖
K

1 + M
g
(3)
K

1 = 2M
gv

K

1 ,

M
φ
‖
K

1 − M
g
(3)
K

1 = −2
f⊥

K

f
‖
K

ms − mq

mK∗
+ 2

m2
s − m2

q

m2
K∗

− 4κ
‖
4(K

∗). (2.14)

Again, g
(3)
K is a twist-4 DA whose first moment is not known from any independent analysis,

whereas M
gv

K

1 , the first moment of the twist-3 DA gv
K , can be read off eq. (4.6) in ref. [13]:

2M
gv

K

1 = M
φ
‖
K

1 +
f⊥

K

f
‖
K

ms − mq

mK∗
. (2.15)

We can then solve (2.14) for a
‖
1(K

∗) and rederive eq. (2.2), the result obtained in ref. [6].

Let us now apply the same method to chiral-odd operators, with the aim of obtaining

an analogous new expression for a⊥1 (K∗). The relevant nonlocal operator relations are

∂

∂xµ
q̄(x)σµνs(−x) = −i∂ν q̄(x)s(−x) + (ms − mq)q̄(x)γνs(−x)

+

∫ 1

−1
dvq̄(x)gxαGα

ν(vx)s(−x) − i

∫ 1

−1
dvvq̄(x)gxαGαµ(vx)σµνs(−x),

∂µ{q̄(x)σµνs(−x)} = −i
∂

∂xν
q̄(x)s(−x) − (ms + mq)q̄(x)γνs(−x)

+

∫ 1

−1
dvvq̄(x)gxαGα

ν(vx)s(−x) − i

∫ 1

−1
dvq̄(x)gxαGαµ(vx)σµνs(−x).

– 5 –
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(2.16)

These relations were first derived, without the terms in ms ± mq, in ref. [11]; the terms in

the quark masses are new.

The relevant K∗ matrix elements are given by [11]:

〈0|q̄(x)σµνs(−x)|K∗(q, λ)〉 = if⊥
K

[

(e(λ)
µ qν − e(λ)

ν qµ)

∫ 1

0
du eiξqx

[

φ⊥
K(u) + O(x2)

]

+ (qµxν − qνxµ)
e(λ)x

(qx)2
m2

K∗

∫ 1

0
du eiξqx

[

ht
K(u) −

1

2
φ⊥

K(u) −
1

2
h

(3)
K (u) + O(x2)

]

+
1

2
(e(λ)

µ xν − e(λ)
ν xµ)

m2
K∗

qx

∫ 1

0
du eiξqx

(

h
(3)
K (u) − φ⊥

K(u) + O(x2)
)

]

, (2.17)

〈0|q̄(x)s(−x)|K∗(q, λ)〉 =

= −i

(

f⊥
K − f

‖
K

ms + mq

mK∗

)

(

e(λ)x
)

m2
K∗

∫ 1

0
du eiξqx

(

hs
K(u) + O(x2)

)

, (2.18)

where, again, φ⊥
K is the leading-twist DA of the transversely polarised K∗ and hs,t

K and h
(3)
K

are higher-twist DAs. In addition, we also need the following quark-quark-gluon matrix

element:

〈0|q̄(gG µ
α )σβµs|K∗(q, λ)〉 =

= f⊥
Km2

K∗

{

1

2
κ⊥

3 (K∗)(e(λ)
α qβ + e

(λ)
β qα) + κ⊥

4 (K∗)(e(λ)
α qβ − e

(λ)
β qα)

}

. (2.19)

Here κ⊥
3 (K∗) is a twist-3 matrix element, κ⊥

4 (K∗) is twist-4; both are O(ms − mq) due to

G-parity.1 Taking matrix elements of (2.16), one obtains expressions in qν, e
(λ)
ν and xν . To

twist-4 accuracy only the former two are relevant and yield a set of four linear equations

for the four first moments of gv
K , hs

K , ht
K and h

(3)
K :

−(κ⊥
3 (K∗) − 2κ⊥

4 (K∗)) + δ+M
gv

K

1 + M
hs

K

1 =
1

2
M

h
(3)
K

1 +
1

2
M

φ⊥
K

1 ,

κ⊥
3 (K∗) + 2κ⊥

4 (K∗) + δ+M
gv

K

1 − M
hs

K

1 − δ+M
φ
‖
K

1 =
1

2
M

h
(3)
K

1 − M
ht

K

1 +
1

2
M

φ⊥
K

1 ,

3M
h
(3)
K

1 − M
φ⊥

K

1 = 2δ− ,

M
h3

K

1 − 2M
ht

K

1 + M
φ⊥

K

1 = 0 (2.20)

with δ± =
f
‖
K

f⊥
K

ms±mq

m∗
K

. The solution of that system implies

δ+M
gv

K

1 =
1

6
δ− +

1

2
δ+M

φ
‖
K

1 +
1

3
M

φ⊥
K

1 − 2κ⊥
4 (K∗),

1The normalisation of κ⊥
3 (K∗) is chosen in such a way that

R

DαT (α) = κ⊥
3 (K∗) for the twist-3 DA

T (α) defined in ref. [13].

– 6 –
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〈q̄q〉 = (−0.24 ± 0.01)3 GeV3 〈s̄s〉 = (1 − δ3) 〈q̄q〉

〈q̄σgGq〉 = m2
0 〈q̄q〉 〈s̄σgGs〉 = (1 − δ5)〈q̄σgGq〉

〈αs

π
G2

〉

= (0.012 ± 0.003)GeV4

m2
0 = (0.8 ± 0.1)GeV2, δ3 = 0.2 ± 0.2, δ5 = 0.2 ± 0.2

ms(2GeV) = (100 ± 20)MeV ←→ ms(1GeV) = (137 ± 27)MeV

mq(µ) = ms(µ)/R, R = 24.4 ± 1.5

αs(mZ) = 0.1187 ± 0.002 ←→ αs(1GeV) = 0.534+0.064
−0.052

fK = (0.160 ± 0.002)GeV, f
‖
K = (0.217 ± 0.005)GeV

f⊥
K = (0.185 ± 0.010)GeV

Table 1: Input parameters for sum rules at the renormalisation scale µ = 1 GeV. The value of ms

is obtained from unquenched lattice calculations with nf = 2 flavours as summarised in [15], which

agrees with the results from QCD sum rule calculations [16]. mq is taken from chiral perturbation

theory [17].2 αs(mZ) is the PDG average [19], fK and f
‖
K are known from experiment and f⊥

K

has been determined in refs. [7, 8]. The errors of quark masses and condensates are treated as

correlated, see text.

which must agree with M
gv

K

1 as given in eq. (2.15). Solving for a⊥1 (K∗), one finds

3

5
a⊥1 (K∗) = −

f
‖
K

f⊥
K

ms − mq

2mK∗
+

3

2

m2
s − m2

q

m2
K∗

+ 6κ⊥
4 (K∗), (2.21)

which is the wanted new relation for a⊥1 (K∗). Note that in all three relations (2.1), (2.2)

and (2.21) κ4 enters multiplied with a large numerical factor which implies that the theo-

retical uncertainty of the resulting values of a1 will be much larger than that of κ4 itself.

3. QCD sum rules for κ4, κ
‖
4

and κ
⊥
4

In order to obtain numerical predictions for a1 from the relations derived in the last section,

one needs to know the values of the κ4 matrix elements. κ4(K) and κ
‖
4(K

∗) have been

calculated in ref. [6] from QCD sum rules to leading order in SU(3) breaking parameters

with the following results:

κ4(K)BL = −0.11 ± 0.03, κ
‖
4(K

∗)BL = −0.050 ± 0.010 . (3.1)

These results refer to a renormalisation scale of 1 GeV.

2mq has also been determined from lattice calculations. The most recent papers on this topic are

refs. [18]. The central value of ms/mq determined in the first of these papers with nf = 2 running flavours

and nonperturbative renormalisation agrees with the result from chiral perturbation theory, whereas the

result of the second, obtained with nf = 3 and perturbative (two-loop) renormalisation, is a bit lower. As

the field appears to develop rapidly, we refrain from taking either side and stay with the result from chiral

perturbation theory.

– 7 –
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In this section we present QCD sum rules for κ4(K) and κ
‖
4(K

∗) which are accurate

to NLO in SU(3) breaking and also a new sum rule for κ⊥
4 (K∗) to the same accuracy. For

all sum rules we include O(mq) effects. The sum rules are of the generic form

κ4(K)f2
Kmn

Ke−m2
K

/M2
+ contribution from higher mass states = BM2ΠG, (3.2)

and correspondingly for K∗. ΠG are correlation functions of type

ΠG(q) = i

∫

d4yeiqy〈0|T [q̄(gGαµ)Γµ
1s](y)[s̄Γ2q](0)|0〉

with suitably chosen Dirac structures Γµ
1 and Γ2; explicit expressions for all relevant ΠG are

given in appendix A. BM2ΠG is the Borel transform of ΠG, M2 the Borel parameter and

n is either 2 or 4. In order to separate the ground state from higher mass contributions,

one usually models the latter, using global quark hadron duality, by an integral over the

perturbative spectral density:

contribution from higher mass states ≈

∫ ∞

s0

e−s/M2 1

π
ImΠG(s); (3.3)

the parameter s0 is called continuum threshold. The input parameters for the QCD sum

rules are collected in table 1.

All κ4 parameters can actually be determined from more than one sum rule derived

from various ΠG which can be characterised by the following features:

• the currents can have the same or different chirality, which results in chiral-even and

chiral-odd sum rules, respectively;

• the hadronic states saturating ΠG can have unique spin-parity or come with different

parity (e.g. 0− and 1+), which results in pure-parity and mixed-parity sum rules,

respectively.

Note that all chiral-odd sum rules are also pure-parity.

In chiral-odd sum rules the quark condensates always appear in the combination 〈q̄q〉−

〈s̄s〉 = δ3〈q̄q〉 and 〈q̄σgGq〉 − 〈s̄σgGs〉 = δ5〈q̄σgGq〉, which induces a large dependence on

the only poorly constrained parameters δ3,5 and also increases the impact of the gluon

condensate contribution which is equally poorly known. We therefore decide to drop all

chiral-odd sum rules and only use chiral-even ones.

As for mixed and pure-parity sum rules, they come with different mass dimensions:

n = 2 in (3.2) for mixed-parity vs. n = 4 for pure-parity sum rules. It is an important

result of this paper that the continuum contributions to the mixed-parity sum rules, for

typical Borel parameters M2 around 1.7GeV2, are small and below 10% for all three κ4.

Pure-parity sum rules, on the other hand, have a large continuum contribution around 30%.

There are two reasons for this result: first, the additional power of m2
K in pure-parity sum

rules counteracts the exponential suppression of the continuum contribution. Second, the

contributions of particles with different parity have different sign: it was already found in

ref. [6] that κ4(K) and κ
‖
4(K1) have opposite sign; we find that the same applies to κ

‖
4(K

∗)

– 8 –



J
H
E
P
0
2
(
2
0
0
6
)
0
3
4

and the corresponding κ4(K
∗
0 ) of the lowest scalar resonance, and ditto to κ⊥

4 (K∗) and the

coupling κ⊥
4 (K1) of the axial vector K1 meson. These results suggest that the κ4 matrix

elements of opposite-parity mesons have generically different signs and tend to cancel each

other in mixed-parity sum rules, which results in a small continuum contribution. From a

more formal point of view it is rather obvious from the definitions eqs. (2.3), (2.4) and (2.19)

that the sign of κ4 changes under a parity transformation,3 which is in line with our findings.

The mixed-parity sum rules for K and K∗ do involve the three spin-parity systems

(0−, 1+), (1−, 0+) and (1−, 1+). Note that for all of them the “wrong”-parity ground state

(e.g. the scalar K∗
0 (1430)) and the first orbital excitation of the “right”-parity state (e.g.

the vector K∗(1410)) have nearly equal mass, which makes the cancellation very effective.

We conclude that mixed-parity sum rules are more reliable than pure-parity ones and, as

a consequence, will not consider the latter in this paper. In view of the cancellation of

contributions of different sign we also decide to include explicitly only the lowest-mass

ground state in the mixed-parity sum rules, which differs from the procedure adopted by

the authors of ref. [6].

Let us now turn to the question how to choose the Borel parameter M2 and the contin-

uum threshold s0, the internal sum rule parameters. As mentioned before, the dependence

of the sum rules on s0 is weak and so we simply use the same values of s0 as for the

quark current sum rules, i.e. s0(K) = (1.1 ± 0.3)GeV2, s
‖
0(K

∗) = (1.7 ± 0.3)GeV2 and

s⊥0 (K∗) = (1.3 ± 0.3)GeV2 [7]. The small dependence on s0 also allows one to use slightly

higher values of M2 than the usual 1 to 2GeV2, which improves the convergence of the

operator product expansion of the correlation functions and reduces the variation of the

sum rule with M2. We choose M2 = (1.6 ± 0.4)GeV2 for K and M2 = (1.8 ± 0.4)GeV2

for K∗.

After this general discussion of the choice of sum rules and parameters let us now turn

to the three κ4 parameters in turn.

3.1 κ4(K)

The mixed-parity sum rule for κ4(K) is obtained from the correlation function Π
(a)
G,2 in

appendix A, eq. (A.6), and given by

f2
Km2

Kκ4(K) e−m2
K

/M2
=

αs

72π3
(m2

s − m2
q)

∫ s0

0
ds e−s/M2

(

10 ln
s

µ2
− 25

)

+
2

9

αs

π
(ms〈q̄q〉 − mq〈s̄s〉)

{

−
1

3
+ γE − ln

M2

µ2
+

∫ ∞

s0

ds

s
e−s/M2

}

+
10

9

αs

π
(ms〈s̄s〉 − mq〈q̄q〉) +

1

6M2
(ms〈s̄σgGs〉 − mq〈q̄σgGq〉)

+
m2

s − m2
q

6M2

〈αs

π
G2

〉

{

1 −
1

2

(

ln
M2

µ2
− γE + 1

)

− M2

∫ ∞

s0

ds

2s2
e−s/M2

}

+
8παs

27M2
[〈q̄q〉2 − 〈s̄s〉2] . (3.4)

3In QCD parity is not a symmetry of the hadronic spectrum because the U(1)A-symmetry is broken.
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Figure 1: (Colour online) Left panel: κ4(K) from (3.4) as function of the Borel parameter M2.

Parameters: renormalisation scale µ = 1 GeV, s0 = 1.1 GeV2. Solid line: central value of input

parameters; dashed lines: red: δ3 = 0, 0.4, green: δ5 = 0, 0.4, blue: αs(mZ) = 0.1167, 0.1207. Right

panel: a1(K) as function of M2 from the operator relation (2.1) (colour-coded as in the left panel)

and the value of a1(K) determined in ref. [7] (purple lines).
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m
s
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a1(K)

Figure 2: Dependence of the central value of a1(K) from (2.1) on ms(2 GeV). Solid line:

mq(2 GeV) = 4 MeV, dashed line: mq(2 GeV) = 0 MeV.

This sum rule includes all relevant contributions up to dimension six. Numerically, all

dominant contributions have the same sign, with the largest one from 〈s̄s〉, followed by the

ones from 〈s̄σgGs〉 and perturbation theory which are roughly of the same size.

In figure 1 we plot the resulting values for κ4(K) and, via (2.1), a1(K), displaying, for

illustration, explicitly the dependence on αs and δ3,5. It is evident that the dependence of

both quantities on δ3 and δ5 is nonnegligible; at the same time, the comparison with a1(K)

obtained in ref. [7] from a QCD sum rule for quark currents shows that both sum rules

agree within errors.4 Note that the inclusion of the perturbative contribution is crucial:

without it, we would have obtained a negative result for a1(K). The impact of nonzero mq

is also relevant and shifts the central value of a1(K) by +0.025.

As for the theoretical uncertainties of κ4(K) and a1(K) we note that they arise first

from the QCD sum rule parameters and second from the uncertainties of the hadronic

4The results from the quark current sum rules quoted in this paper are slightly larger than the ones given

in ref. [7]. This is due to the fact that we have included infrared sensitive terms of type m2
s ln(M2/m2

s)

in the contribution of the gluon condensate in the mixed quark-quark-gluon condensate rather than in the

Wilson-coefficient of the gluon condensate, cf. the discussion in appendix A and ref. [20].
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parameters given in table 1. As for the former, as already stated above, we choose M2 =

(1.6 ± 0.4)GeV2 and s0 = (1.1 ± 0.3)GeV2 and add the corresponding uncertainties in

quadrature. As for the latter, we treat mq, ms, 〈q̄q〉, 〈q̄σgGq〉, δ3 and δ5 as parameters with

correlated errors. Chiral perturbation theory helps to unravel some of these correlations:

for instance, one has (ms + mq)/(2mq) = m2
K/m2

π and m2
K = −2(ms + mq)〈q̄q〉/f

2
π in LO

chiral perturbation theory [17]. The dependence of δ3,5 on ms is unfortunately unknown

(and indeed would deserve further study). In order to estimate the uncertainty of κ4(K)

and a1(K), we hence eliminate, using the above relations, mq and 〈q̄q〉 as independent

parameters in favour of ms, but keep m2
0 = 〈q̄σgGq〉/〈q̄q〉 and δ3,5. This procedure is

likely to overestimate the uncertainties induced by 〈s̄s〉 and 〈s̄σgGs〉, but it is difficult to

do better at present. Varying all remaining independent input parameters within their

respective ranges given in table 1, we obtain the following results:

κ4(K) = −0.09 ± 0.01 ± 0.01 ± 0.01 ± 0.02 ± 0.01 ± 0.00 = −0.09 ± 0.01 ± 0.02,

a1(K) = 0.07 ± 0.04 ± 0.03 ± 0.11 ± 0.07 ± 0.03 ± 0.01 = 0.07 ± 0.04 ± 0.14, (3.5)

where the first uncertainty comes from the variation of the sum rule specific parameters

M2 and s0, the second one from αs, the 3rd from ms, the 4th from δ3, the 5th from δ5 and

the 6th from m2
0 = 〈q̄σgGq〉/〈q̄q〉. For the total uncertainty we give two terms: the first

comes from the sum rule parameters and the second is obtained by adding all hadronic

uncertainties in quadrature. As mentioned before, any uncertainty of κ4(K) induces a

corresponding uncertainty in a1(K) that is about four times larger, except for the strange

quark masses whose uncertainty also plays in the second term on the right-hand side

of (2.1). The dependence of a1(K) on ms is shown in figure 2. The effect of nonzero mq in

the first term on the right-hand side of (2.1) is a shift by +0.04, which is partially, but not

completely, compensated by the mq-dependent contributions to κ4(K). Comparing with

the value of a1(K) quoted in ref. [6], eq. (1.5), we see that the central value in (3.5) is

smaller and also the total uncertainty is larger. The larger error is due to the fact that we

have chosen slightly larger errors for ms and also have included the uncertainty induced

by αs.

Let us now compare the result (3.5) with the one obtained from quark current sum

rules [7], with the same sequence of errors as in (3.5):

a1(K)BZ = 0.06 ± 0.01 ± 0.00 ± 0.01 ± 0.01 ± 0.01 ± 0.00 = 0.06 ± 0.01 ± 0.02 . (3.6)

This number is slightly larger than the one quoted in ref. [7], cf. footnote 2. Although

the central values of a1(K) agree very well and hence confirm the consistency of the sum

rule results, it is obvious that the operator relation (2.1) cannot match the accuracy of the

quark current sum rule and is hence not very useful for constraining a1(K).

3.2 κ
‖
4
(K∗)

Let us now turn to κ
‖
4(K

∗). The mixed-parity sum rule is derived from the correlation

function Π
(v)
G,2 in appendix A, eq. (A.11), and reads

κ
‖
4(K

∗)(f
‖
K)2m2

K∗e−m2
K∗/M2

= (m2
s − m2

q)
αs

72π3

∫ s0

0
ds e−s/M2

(

10 ln
s

µ2
− 25

)
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Figure 3: Left panel: κ
‖
4(K

∗) from (3.7) as function of the Borel parameter M2. Parameters:

renormalisation scale µ = 1 GeV, s0 = 1.7 GeV2. Solid black line: central values of parameters; the

coloured lines have the same meaning as in figure 1. Right panel: a
‖
1(K

∗) as function of M2 from

the operator relation (2.2) and the sum rule for a
‖
1(K

∗) calculated in ref. [7] (purple lines).

−
2αs

9π
(ms〈q̄q〉 − mq〈s̄s〉)

{

−
1

3
+ γE − ln

M2

µ2
+

∫ ∞

s0

ds

s
e−s/M2

}

+
10αs

9π
(ms〈s̄s〉 − mq〈q̄q〉) +

1

6M2
(ms〈s̄σgGs〉 − mq〈q̄σgGq〉)

+
m2

s − m2
q

6M2

〈αs

π
G2

〉

{

1 −
1

2

(

ln
M2

µ2
− γE + 1

)

− M2

∫ ∞

s0

ds

2s2
e−s/M2

}

+
8παs

27M2
[〈q̄q〉2 − 〈s̄s〉2] . (3.7)

The resulting values of κ
‖
4(K

∗) and a
‖
1(K

∗) are shown in figure 3. Again, the contribution

from perturbation theory is crucial numerically: without it, the resulting values of a
‖
1(K

∗)

would have been negative. Our final results are:

κ
‖
4(K

∗) = −0.022 ± 0.003 ± 0.001 ± 0.003 ± 0.004 ± 0.001 ± 0.001

= −0.022 ± 0.003 ± 0.005,

a
‖
1(K

∗) = 0.01 ± 0.02 ± 0.01 ± 0.01 ± 0.02 ± 0.01 ± 0.00

= 0.01 ± 0.02 ± 0.03 (3.8)

with the same assignment and treatment of uncertainties as in (3.5); the uncertainty coming

from f⊥
K is included in that from ms. In contrast to the pseudoscalar case, the translation

of κ
‖
4(K

∗) into a
‖
1(K

∗) does not increase the uncertainty from ms any more than the other

uncertainties, so that the total error of a
‖
1(K

∗) is smaller than that of a1(K). The impact

of mq-dependent terms in negligible. The results (3.8) differ from those of ref. [6] where

the pure-parity sum rule has been used instead. The result from the quark current sum

rule is

a
‖
1(K

∗)BZ = 0.03 ± 0.02. (3.9)

Again we find agreement between the results for a1 from the sum rules for κ4 and the quark

current sum rules, but at the same time the uncertainty of the former is larger than that

of the latter.
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Figure 4: Left panel: κ⊥
4 (K∗) from (3.10) as function of the Borel parameter M2. Parameters:

renormalisation scale µ = 1 GeV, s0 = 1.3 GeV2. Solid black line: central values of parameters; the

coloured lines have the same meaning as in figure 1. Right panel: a⊥
1 (K∗) as function of M2 from

the operator relation (2.21) and the sum rule for a⊥
1 (K∗) calculated in ref. [7] (purple lines).

3.3 κ
⊥
4
(K∗)

The last parameter left to be determined is κ⊥
4 (K∗). Its mixed-parity sum rule is derived

from the correlation function ΠG,4, eq. (A.16), and reads

κ⊥
4 (K∗)(f⊥

K)2m2
K∗e−m2

K∗/M2
= (m2

s − m2
q)

αs

72π3

∫ s0

0
ds e−s/M2

(

−6 ln
s

µ2
+ 14

)

+
msαs

3π

{

1

3
〈q̄q〉 − 2〈s̄s〉

}

−
mqαs

3π

{

1

3
〈s̄s〉 − 2〈q̄q〉

}

+
1

6M2
(mq〈q̄σgGq〉 − ms〈s̄σgGs〉)

+
m2

s − m2
q

12M2

〈αs

π
G2

〉

{

−2 +

(

(ln
M2

µ2
− γE + 1

)

+ M2

∫ ∞

s0

ds

s2
e−s/M2

}

. (3.10)

The results for κ⊥
4 (K∗) and a⊥1 (K∗) are shown in figure 4; including uncertainties, we find

κ⊥
4 (K∗) = 0.018 ± 0.004 ± 0.001 ± 0.002 ± 0.002 ± 0.002 ± 0.001

= 0.018 ± 0.004 ± 0.004 ,

a⊥1 (K∗) = 0.09 ± 0.04 ± 0.01 ± 0.01 ± 0.02 ± 0.02 ± 0.01

= 0.09 ± 0.04 ± 0.03 . (3.11)

Note that the “enhancement” factor of uncertainties of a⊥1 (K∗) due to κ⊥
4 (K∗) is 10, which

is the reason for the large total uncertainty in (3.11). The impact of mq-dependent terms

is again negligible. The quark current sum rule yields [7]

a⊥1 (K∗)BZ = 0.04 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.00 ± 0.00 = 0.04 ± 0.01 ± 0.02. (3.12)

Hence, also for a⊥1 (K∗) do the results of the two approaches agree within errors, with the

quark current sum rule being more accurate.

4. Summary and conclusions

In this paper, we have obtained the following relations for the first Gegenbauer moments
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of the leading-twist distribution amplitudes of K and K∗ mesons:

9

5
a1(K) = −

ms − mq

ms + mq
+ 4

m2
s − m2

q

m2
K

− 8κ4(K),

3

5
a
‖
1(K

∗) = −
f⊥

K

f
‖
K

ms − mq

mK∗
+ 2

m2
s − m2

q

m2
K∗

− 4κ
‖
4(K

∗),

3

5
a⊥1 (K∗) = −

f
‖
K

f⊥
K

ms − mq

2mK∗
+

3

2

m2
s − m2

q

m2
K∗

+ 6κ⊥
4 (K∗), (4.1)

where the κ4 matrix elements are defined as

〈0|q̄(gGαµ)iγµγ5s|K(q)〉 = iqαfKm2
Kκ4(K) ,

〈0|q̄(gGαµ)iγµs|K∗(q, λ)〉 = e(λ)
α f

‖
Km3

K∗κ
‖
4(K

∗) ,
〈0|q̄(gG µ

α )σβµs|K∗(q, λ)〉 =

= f⊥
Km2

K∗

{

1

2
κ⊥

3 (K∗)(e(λ)
α qβ + e

(λ)
β qα) + κ⊥

4 (K∗)(e(λ)
α qβ − e

(λ)
β qα)

}

.

The first two relations in (4.1) were already derived in ref. [6], the third is new. We have

interpreted these relations as constraints on a1 and calculated the three κ4 parameters from

QCD sum rules. We have improved the sum rules given in ref. [6] for κ4(K) and κ
‖
4(K

∗)

by including two-loop perturbative contributions, the gluon condensate contribution and

terms in mq; the former proved to be very relevant numerically, the terms in mq are rele-

vant for a1(K). We have also derived a new sum rule for κ⊥
4 (K∗) to the same accuracy. All

these sum rules exhibit only a small continuum contribution and all relevant contributions

come with equal sign. The results for a1 obtained from the relations (4.1) agree, within

errors, with those obtained in ref. [7] from quark current sum rules which is an impor-

tant confirmation of the consistency of QCD sum rule calculations of these quantities and

strengthens our confidence in the results. From a phenomenological point of view, however,

the operator relations (4.1) are, at least at present, less useful than the quark current sum

rules for a1, as the uncertainties of the κ4 parameters are too large to allow an accurate

determination of a1. The uncertainties of κ4 arise from (a) the dependence of the sum

rule on the sum rule internal parameters M2 and s0, (b) the uncertainties of αs at the

hadronic scale ∼ 1GeV and (c) the uncertainties of ms and the SU(3) breaking of quark

and mixed condensates parametrised by δ3,5. All these uncertainties enter a1 multiplied by

large factors 5 to 10, eqs. (4.1). In contrast, the quark current sum rules for a1 studied in

refs. [5, 7] are not very sensitive to these effects and come with smaller uncertainties. We

hence suggest that the relations (4.1) be interpreted as constraints on κ4 rather than a1.

Using the updated values of a1 from quark current sum rules quoted in section 3, adding

the errors linearly,

a1(K)BZ = 0.06 ± 0.03, a
‖
1(K

∗)BZ = 0.03 ± 0.02 a⊥1 (K∗)BZ = 0.04 ± 0.03, (4.2)

we find by solving (4.1) for κ4:

κ4(K) = −0.09 ± 0.02,
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κ
‖
4(K

∗) = −0.024 ± 0.003,

κ⊥
4 (K∗) = 0.012 ± 0.004.

For κ4(K) and κ
‖
4(K

∗) the central value agrees well with the results from the direct calcu-

lation, for κ⊥
4 (K∗) there is agreement within errors. How can these results be improved?

The quark current results for a1 would profit from a calculation of perturbative radiative

corrections ∼ m2
sαs, which is technically feasible, but beyond the scope of this paper. Both

a1 and κ4 would benefit from a reduction of the errors of ms.

In summary, we hope that the present paper helps to settle the controversy about a1

which started from the observation that the original calculation of ref. [9] suffers from a sign-

mistake of the perturbative contribution, which was corrected in ref. [4]. Unfortunately,

the chiral-odd sum rules used in ref. [4] come with large cancellations of the dominant

contributions and are hence not very useful for precise calculations of a1. In ref. [5], a1(K)

was then determined from chiral-even quark current sum rules and in ref. [7] also a
(⊥,‖)
1 (K∗)

was calculated using that method. These sum rules do not exhibit any cancellations of large

contributions and are stable under the variation of all input parameters. As we have shown

in this paper, these results agree with those from the operator relations (4.1) within errors,

but are more accurate. We conclude that the quark current sum rule results (4.2) present

the presently best determination of a1. Given the phenomenological importance of a1, an

independent calculation on the lattice would be both timely and useful and we would like

to appeal to the lattice community to take up the challenge.
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A. Correlation functions

In this appendix we give the relevant formulas for the correlation functions from which

the QCD sum rules given in section 3 are obtained. The correlation functions are of the

generic form

Πα...(q) = i

∫

d4yeiqy〈0|T [q̄(gGαµ)Γµ
1s](y)[s̄Γ2q](0)|0〉 , (A.1)

where Γµ
1 and Γ2 are suitably chosen Dirac structures. The dots stand for additional indices

from Γ2.

A.1 κ4(K)

κ4(K) can be extracted from either a pure-partity sum rule, to which only pseudoscalar

states contribute, or a mixed-parity sum rule which also contains contributions from axi-

alvector mesons. As for pure-parity sum rules, one possible choice of the Dirac structures

is Γµ
1 = iγµγ5 and Γ2 = iγ5, which results in the correlation function

Πα(q) = iqαΠ
(p)
G (q2). (A.2)
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Another choice is Γµ
1 = iγµγ5 as before and Γ2 = γβγ5, with the correlation function

Παβ(q) = gαβΠ
(a)
G,1(q

2) + qαqβΠ
(a)
G,2(q

2), (A.3)

where Π
(a)
G,1 receives contributions from 1+ intermediate states only, whereas Π

(a)
G,2 is a

mixed-parity correlation function with contributions from both 0− and 1+ states.

These three correlation functions are not independent of each other, but related by

∂β s̄γβγ5q = (ms + mq)s̄iγ5q, so that

Π
(a)
G,1(q

2) + q2Π
(a)
G,2(q

2) = (ms + mq)Π
(p)
G + contact terms, (A.4)

where the contact terms are independent of q2. As terms in mq are numerically relevant

in the operator relation (2.1), we calculate the correlation functions to O(mq) and find

Π
(p)
G (q2) = −(ms − mq)

αs

48π3
q2

[

ln2 −q2

µ2
− ln

−q2

µ2

]

−
1

4q2
[〈q̄σgGq〉 − 〈s̄σgGs〉]

−
αs

3π
[〈q̄q〉 − 〈s̄s〉] ln

−q2

µ2

+
1

8q2

〈αs

π
G2

〉

[

ms

(

1 − ln
−q2

m2
s

)

− mq

(

1 − ln
−q2

m2
q

)]

,

Π
(a)
G,1(q

2) = (m2
s − m2

q)
αs

144π3
q2

[

7 ln2 −q2

µ2
− 47 ln

−q2

µ2

]

−
msαs

3π

[

5

3
〈q̄q〉 − 〈s̄s〉

]

ln
−q2

µ2
+

mqαs

3π

[

5

3
〈s̄s〉 − 〈q̄q〉

]

ln
−q2

µ2

−
(mq

12
+

ms

4

) 〈q̄σgGq〉

q2
+

(ms

12
+

mq

4

) 〈s̄σgGs〉

q2
+

mqms

8q2

〈αs

π
G2

〉

ln
m2

s

m2
q

−
m2

s

24q2

〈αs

π
G2

〉

[

1 + ln
−q2

m2
s

]

+
m2

q

24q2

〈αs

π
G2

〉

[

1 + ln
−q2

m2
q

]

−
8παs

27q2

[

〈q̄q〉2 − 〈s̄s〉2
]

, (A.5)

Π
(a)
G,2(q

2) = (m2
s − m2

q)
αs

72π3

[

−5 ln2 −q2

µ2
+ 25 ln

−q2

µ2

]

+
2msαs

9πq2
〈q̄q〉

[

1

3
+ ln

−q2

µ2

]

−
10msαs

9πq2
〈s̄s〉

−
2mqαs

9πq2
〈s̄s〉

[

1

3
+ ln

−q2

µ2

]

+
10mqαs

9πq2
〈q̄q〉 +

ms

6q4
〈s̄σgGs〉 −

mq

6q4
〈q̄σgGq〉

+
m2

s

6q4

〈αs

π
G2

〉

[

1 −
1

2
ln

−q2

m2
s

]

−
m2

q

6q4

〈αs

π
G2

〉

[

1 −
1

2
ln

−q2

m2
q

]

+
8παs

27q4

[

〈q̄q〉2 − 〈s̄s〉2
]

. (A.6)
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The expression for Π
(p)
G has already been given in ref. [6], together with Π

(a)
G,(1,2), to leading

order in SU(3) breaking. The terms in m2
s and mq are new. The above expressions fulfill

the relation (A.4).

At this point a few comments are in order concerning the structure of these formulas.

The reader may have noticed that the Wilson coefficient of the gluon condensate contribu-

tions to the above correlation functions contain infrared sensitive terms ∼ ln(−q2/m2
q,s).

These terms appear to violate the structure of the operator product expansion which stipu-

lates that long- and short-distance contributions be properly factorised and all long-distance

contributions be absorbed into the condensates, leaving purely short-distance Wilson coef-

ficients which must be analytic in mq,s. As discussed in ref. [20], the appearance of terms

logarithmic in mq,s is due to the fact that the above expressions are obtained using Wick’s

theorem to calculate the condensate contributions, which implies that the condensates are

normal-ordered: 〈O〉 = 〈0| : O : |0〉. Recasting the OPE in terms of non-normal-ordered

operators, all infrared sensitive terms can be absorbed into the corresponding condensates.

Indeed, using [20]

〈0|s̄gGs|0〉 = 〈0| : s̄gGs : |0〉 +
ms

2
log

m2
s

µ2
〈0| :

αs

π
G2 : |0〉,

and the corresponding formula for q quarks, all terms ∼ ln m2
q,s can be absorbed into the

mixed quark-quark-gluon condensate and the resulting Wilson-coefficients can be expanded

in powers of m2
q,s. In calculating the sum rules, we hence will use

ln
−q2

m2
q,s

→ ln
−q2

µ2
.

As for the structure of the ultraviolet logarithms ∼ ln(−q2/µ2), they follow from the mixing

of the gluonic operator q̄(gGαµ)iγµγ5s with various quark-bilinear operators as given in

eq. (20) in ref. [6].

A.2 κ
‖
4
(K∗)

The correlation functions used to determine κ
‖
4(K

∗) are very similar to those in the previous

subsection. We choose Γµ
1 = iγµ and Γ2 = σβγ to obtain the pure-parity correlation

function

Παβγ(q) = i(gαβqγ − gαγqβ)Π
(σ)
G (q2) (A.7)

and Γ2 = γβ which yields

Παβ(q) = gαβΠ
(v)
G,1(q

2) + qαqβΠ
(v)
G,2(q

2). (A.8)

Π
(σ)
G and Π

(v)
G,1 receive contributions from 1− states only and Π

(v)
G,2 from both 1− and 0+

states. Another possible choice is Γ2 =
�

which yields the pure-parity correlation function

Πα(q) = qαΠ
(s)
G (q2) (A.9)

– 17 –



J
H
E
P
0
2
(
2
0
0
6
)
0
3
4

with contributions from only 0+ states. Π
(s)
G and Π

(v)
G,1(2) are related by the equation of

motion for the vector current:

Π
(v)
G,1(q

2) + q2Π
(v)
G,2(q

2) = (ms − mq)Π
(s)
G + contact terms. (A.10)

The expression for Π
(σ)
G was given in ref. [6], the other correlation functions are obtained

by the simple replacements

Π
(v)
G,1(2)(q

2) = Π
(a)
G,1(2)(q

2)
∣

∣

∣

mq→−mq, 〈q̄q〉→−〈q̄q〉, 〈q̄σgGq〉→−〈q̄σgGq〉
(A.11)

Π
(s)
G (q2) = Π

(p)
G (q2)

∣

∣

∣

mq→−mq, 〈q̄q〉→−〈q̄q〉, 〈q̄σgGq〉→−〈q̄σgGq〉
(A.12)

which follows from the chiral structure of the correlation functions.

A.3 κ
⊥
4
(K∗)

For κ⊥
4 (K∗), Γµ

1 is given by σβµ and for Γ2 we choose σγδ. The resulting correlation function

has contributions from both 1− and 1+ states and can be written as

Παβγδ(q) = iΠ1−

G,4(q
2)P 1−

4,αβγδ + iΠ1−

G,3(q
2)P 1−

3,αβγδ + iΠ1+

G,4(q
2)P 1+

4,αβγδ , (A.13)

where the projectors P 1± are given by

P 1−

4,αβγδ =
1

q2
[(gαγqβqδ − {α ↔ β}) − ({γ ↔ δ})] ,

P 1−

3,αβγδ =
1

q2
[(gαγqβqδ + {α ↔ β}) − ({γ ↔ δ})] ,

P 1+

4,αβγδ =
1

q2

[

P 1−

4,αβγδ + q2gβγgαδ − q2gαγgβδ

]

.

P 1−
3 projects onto the twist-3 matrix element κ⊥

3 (K∗), P 1−
4 onto κ⊥

4 (K∗) and P 1+

4 onto the

contribution from 1+ intermediate states. As usual, Παβγδ must not have a singularity at

q2 = 0 which implies

Π1−
G,4(0) + Π1+

G,4(0) = 0.

That means that one can construct a mixed-parity sum rule from ΠG,4 ≡ (Π1−
G,4(q

2) +

Π1+

G,4(q
2))/q2 which has lower dimension than the pure-parity sum rule obtained from Π1−

G,4

alone. We find5

Π1−

G,4(q
2) = (m2

s − m2
q)

αs

144π3
q2

[

3 ln2 −q2

µ2
− 11 ln

−q2

µ2

]

+
αsms

3π

[

5

6
〈s̄s〉 +

(

ln
−q2

µ2
−

5

3

)

〈q̄q〉

]

−
αsmq

3π

[

5

6
〈q̄q〉 +

(

ln
−q2

µ2
−

5

3

)

〈s̄s〉

]

+
1

12q2
〈q̄σgGq〉(2ms + mq) −

1

12q2
〈s̄σgGs〉(ms + 2mq)

5We also give q2-independent terms in the quark condensate contribution to Π1±

G,4 because they are

needed for calculating ΠG,4. Note that for Π1±

G,4 these terms are affected by finite counterterms as discussed

in ref. [7], which however cancel in the sum Π1−

G,4 + Π1+

G,4.
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+
1

24q2

〈αs

π
G2

〉

{

−m2
s

[

2 − ln
−q2

m2
s

]

+ m2
q

[

2 − ln
−q2

m2
q

]

+ 2mqms ln
m2

q

m2
s

}

+ 0 · (〈q̄q〉2 − 〈s̄s〉2), (A.14)

Π1+

G,4(q
2) = (m2

s − m2
q)

αs

144π3
q2

[

3 ln2 −q2

µ2
− 17 ln

−q2

µ2

]

+
αsms

3π

[

7

6
〈s̄s〉 +

(

− ln
−q2

µ2
+

4

3

)

〈q̄q〉

]

−
αsmq

3π

[

7

6
〈q̄q〉 +

(

− ln
−q2

µ2
+

4

3

)

〈s̄s〉

]

+
1

12q2
〈q̄σgGq〉(2ms − mq) −

1

12q2
〈s̄σgGs〉(ms − 2mq)

+
1

24q2

〈αs

π
G2

〉

{

−m2
s

[

2 − ln
−q2

m2
s

]

+ m2
q

[

2 − ln
−q2

m2
q

]

− 2mqms ln
m2

q

m2
s

}

+ 0 · (〈q̄q〉2 − 〈s̄s〉2), (A.15)

ΠG,4(q
2) = (m2

s − m2
q)

αs

72π3

[

3 ln2 −q2

µ2
− 14 ln

−q2

µ2

]

+
αsms

9πq2
[6〈s̄s〉 − 〈q̄q〉] −

αsmq

9πq2
[6〈q̄q〉 − 〈s̄s〉]

+
1

6q4
(mq〈q̄σgGq〉 − ms〈s̄σgGs〉)

+
1

12q4

〈αs

π
G2

〉

{

−m2
s

[

2 − ln
−q2

m2
s

]

+ m2
q

[

2 − ln
−q2

m2
q

]}

. (A.16)

B. Borel transforms

QCD sum rules are obtained from the Borel transforms of the correlation functions listed

in the previous section. Most of the transforms are straightforward, except for those of

expressions of type 1/(q2)n ln(−q2/µ2), which can, however, be conveniently calculated

using the formula
1

π
Im(−q2 − i0)α =

sα

Γ(−α)Γ(1 + α)
Θ(s)

with s = −q2. We then obtain, including continuum subtraction of contributions from

s > s0,

Bsub
M2

1

q2
ln

−q2

µ2
= γE − ln

M2

µ2
+

∫ ∞

s0

ds

s
e−s/M2

,

Bsub
M2

1

(q2)2
ln

−q2

µ2
=

1

M2

(

1 − γE + ln
M2

µ2
+ M2

∫ ∞

s0

ds

s2
e−s/M2

)

.
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